首頁 > 關(guān)于我們 > 行業(yè)資訊
什么是納米材料?
納米材料如今已逐漸滲透到我們的生活中,對于納米材料,普通大眾都尚沒有較深入的認(rèn)識和了解,然而納米材料的應(yīng)用已經(jīng)不足為奇,比如納米涂料、納米洗護(hù)用品、納米防水劑等等。
那么什么是納米材料呢?納米級結(jié)構(gòu)的材料簡稱為納米材料,由于納米材料是近幾年開始被關(guān)注和應(yīng)用的材料,所以也理解為納米結(jié)構(gòu)的新材料,廣義上是指三維空間中至少有一維處于納米尺度范圍超精細(xì)顆粒材料的總稱。
根據(jù)2011年10月18日歐盟委員會通過的定義,納米材料是一種由基本顆粒組成的粉狀或團(tuán)塊狀天然或人工材料,這一基本顆粒的一個(gè)或多個(gè)三維尺寸在1納米至100納米之間,并且這一基本顆粒的總數(shù)量在整個(gè)材料的所有顆??倲?shù)中占50%以上。
納米材料具有一定的獨(dú)特性,當(dāng)物質(zhì)尺度小到一定程度時(shí),則必須改用量子力學(xué)取代傳統(tǒng)力學(xué)的觀點(diǎn)來描述它的行為,當(dāng)粉末粒子尺寸由10微米降至10納米時(shí),其粒徑雖改變?yōu)?000倍,但換算成體積時(shí)則將有10的9次方倍之巨,所以二者行為上將產(chǎn)生明顯的差異。
納米材料的結(jié)構(gòu)
納米結(jié)構(gòu)是以納米尺度的物質(zhì)單元為基礎(chǔ),按一定規(guī)律構(gòu)筑或營造的一種新體系。
納米陣列體系
已有的研究結(jié)果對納米陣列體系的研究集中在由金屬納米微?;虬雽?dǎo)體納米微粒在一個(gè)絕緣的襯底上整齊排列所形成的二位體系上。
介孔組裝體系
納米微粒與介孔固體組裝體系由于微粒本身的特性,以及與界面的基體耦合所產(chǎn)生的一些新的效應(yīng),也使其成為了研究熱點(diǎn),按照其中支撐體的種類可將它劃分為無機(jī)介孔復(fù)合體和高分子介孔復(fù)合體兩大類,按支撐體的狀態(tài)又可將它劃分為有序介孔復(fù)合體和無序介孔復(fù)合體。
薄膜嵌鑲體系
在薄膜嵌鑲體系中,對納米顆粒膜的主要研究是基于體系的電學(xué)特性和磁學(xué)特性而展開的。美國科學(xué)家利用自組裝技術(shù)將幾百只單壁納米碳管組成晶體索“Ropes”,這種索具有金屬特性,室溫下電阻率小于0.0001Ω/m;將納米三碘化鉛組裝到尼龍-11上,在X射線照射下具有光電導(dǎo)性能,利用這種性能為發(fā)展數(shù)字射線照相奠定了基礎(chǔ)。
納米材料的特性與應(yīng)用
表面與界面效應(yīng)
指納米晶體粒表面原子數(shù)與總原子數(shù)之比隨粒徑變小而急劇增大后所引起的性質(zhì)上的變化。表現(xiàn)為直徑減少,表面原子數(shù)量增多。
超微顆粒的表面具有很高的活性,在空氣中金屬顆粒會迅速氧化而燃燒。如要防止自燃,可采用表面包覆或有意識地控制氧化速率,使其緩慢氧化生成一層極薄而致密的氧化層,確保表面穩(wěn)定化。利用表面活性,金屬超微顆粒可望成為新一代的高效催化劑、貯氣材料和低熔點(diǎn)材料。
小尺寸效應(yīng)
當(dāng)納米微粒尺寸與光波波長,傳導(dǎo)電子的德布羅意波長及超導(dǎo)態(tài)的相干長度、透射深度等物理特征尺寸相當(dāng)或更小時(shí),它的周期性邊界被破壞,從而使其聲、光、電、磁,熱力學(xué)等性能呈現(xiàn)出“新奇”的現(xiàn)象。隨著顆粒尺寸的量變,在一定條件下會引起顆粒性質(zhì)的質(zhì)變。由于顆粒尺寸變小所引起的宏觀物理性質(zhì)的變化稱為小尺寸效應(yīng)。對超微顆粒而言,尺寸變小,同時(shí)其比表面積亦顯著增加,從而產(chǎn)生如下性質(zhì):
1、特殊的光學(xué)性質(zhì)
所有的金屬在超微顆粒狀態(tài)都呈現(xiàn)為黑色。尺寸越小,顏色愈黑,銀白色的鉑(白金)變成鉑黑,金屬鉻變成鉻黑。
金屬在超微顆粒狀態(tài)都呈現(xiàn)為黑色
由此可見,金屬超微顆粒對光的反射率很低,通??傻陀趌%,大約幾微米的厚度就能完全消光。利用這個(gè)特性可以制造高效率的光熱、光電轉(zhuǎn)換材料,以很高的效率將太陽能轉(zhuǎn)變?yōu)闊崮?、電能。另外還有可能應(yīng)用于紅外敏感元件、紅外隱身技術(shù)等。
2、特殊的熱學(xué)性質(zhì)
固態(tài)物質(zhì)在其形態(tài)為大尺寸時(shí),其熔點(diǎn)是固定的,超細(xì)微化后卻發(fā)現(xiàn)其熔點(diǎn)將顯著降低,當(dāng)顆粒小于10納米量級時(shí)尤為顯著。超微顆粒熔點(diǎn)下降的性質(zhì)對粉末冶金工業(yè)具有一定的吸引力。
3、特殊的磁學(xué)性質(zhì)
在研究納米材料過程中科學(xué)家發(fā)現(xiàn)鴿子、海豚、蝴蝶、蜜蜂以及生活在水中的趨磁細(xì)菌等生物體中存在超微的磁性顆粒,使這類生物在地磁場導(dǎo)航下能辨別方向,具有回歸的本領(lǐng)。
小尺寸的磁性超微顆粒與大塊材料顯著不同。大塊的純鐵矯頑力約為 80安/米,而當(dāng)顆粒尺寸減小到 2×10-2微米以下時(shí),其矯頑力可增加1000倍。若進(jìn)一步減小其尺寸,大約小于 6×10-3微米時(shí),其矯頑力反而降低到零,呈現(xiàn)出超順磁性。
利用磁性超微顆粒具有高矯頑力的特性,已作成高儲存密度的磁記錄磁粉,大量應(yīng)用于磁帶、磁盤、磁卡以及磁性鑰匙等。利用超順磁性,人們已將磁性超微顆粒制成用途廣泛的磁性液體。
4、特殊的力學(xué)性質(zhì)
美國學(xué)者報(bào)道氟化鈣納米材料在室溫下可以大幅度彎曲而不斷裂。研究表明,人的牙齒之所以具有很高的強(qiáng)度,是因?yàn)樗怯闪姿徕}等納米材料構(gòu)成的。呈納米晶粒的金屬要比傳統(tǒng)的粗晶粒金屬硬3~5倍。金屬—陶瓷復(fù)合納米材料則可在更大的范圍內(nèi)改變材料的力學(xué)性質(zhì),其應(yīng)用前景十分寬廣。
超微顆粒的小尺寸效應(yīng)還表現(xiàn)在超導(dǎo)電性、介電性能、聲學(xué)特性以及化學(xué)性能等方面。
碳納米管是一種新型的超級材料,它的強(qiáng)度可以達(dá)到鋼材的300倍
量子尺寸效應(yīng)
當(dāng)粒子的尺寸達(dá)到納米量級時(shí),費(fèi)米能級附近的電子能級由連續(xù)態(tài)分裂成分立能級。當(dāng)能級間距大于熱能、磁能、靜電能、靜磁能、光子能或超導(dǎo)態(tài)的凝聚能時(shí),會出現(xiàn)納米材料的量子效應(yīng),從而使其磁、光、聲、熱、電、超導(dǎo)電性能變化。
能級結(jié)構(gòu)
量子尺寸效應(yīng): 當(dāng)粒子的尺寸下降到某個(gè)值時(shí),金屬費(fèi)米能級附近的電子能級由準(zhǔn)連續(xù)變?yōu)殡x散能級的現(xiàn)象和半導(dǎo)體微粒存在不連續(xù)的最高被占據(jù)分子軌道和最低未被占據(jù)分子軌道能級之間的能隙變寬現(xiàn)象。
納米粉末中由于每一粒子組成原子少,表面原子處于不安定狀態(tài),使其表面晶格震動(dòng)的振幅較大,所以具有較高的表面能量,造成超微粒子特有的熱性質(zhì),也就是造成熔點(diǎn)下降,同時(shí)納米粉末將比傳統(tǒng)粉末容易在較低溫度燒結(jié),而成為良好的燒結(jié)促進(jìn)材料。
宏觀量子隧道效應(yīng)
微觀粒子具有貫穿勢壘的能力稱為隧道效應(yīng)。納米粒子的磁化強(qiáng)度等也有隧道效應(yīng),它們可以穿過宏觀系統(tǒng)的勢壘而產(chǎn)生變化,這種被稱為納米粒子的宏觀量子隧道效應(yīng)。
宏觀量子隧道效應(yīng)是基本的量子現(xiàn)象之一,即當(dāng)微觀粒子的總能量小于勢壘高度時(shí),該粒子仍能穿越這一勢壘。近年來,人們發(fā)現(xiàn)一些宏觀量,例如微顆粒的磁化強(qiáng)度,量子相干器件中的磁通量等亦有隧道效應(yīng),稱為宏觀的量子隧道效應(yīng)。
上述的小尺寸效應(yīng)﹑表面效應(yīng)﹑量子尺寸效應(yīng)﹑宏觀量子隧道效應(yīng)和介電限域應(yīng)都是納米微粒和納米固體的基本特征,這一系列效應(yīng)導(dǎo)致了納米材料在熔點(diǎn)﹑蒸氣壓﹑光學(xué)性質(zhì)﹑化學(xué)反應(yīng)性﹑磁性﹑超導(dǎo)及塑性形變等許多物理和化學(xué)方面都顯示出特殊的性能。它使納米微粒和納米固體呈現(xiàn)許多奇異的物理﹑化學(xué)性質(zhì)。